MA 3972-MA-Book April 11, 2018 16:1
282 STEP 4. Review the Knowledge You Need to Score High
Step 3: Evaluate the integrals.
∣∣
∣∣
∫ 1
0
(x−1)^3 dx
∣∣
∣∣=
∣∣
∣
∣∣
(x−1)^4
4
] 1
0
∣∣
∣
∣∣=
∣∣
∣∣−^1
4
∣∣
∣∣=^1
4
∫ 2
1
(x−1)^3 dx=
(x−1)^4
4
] 2
1
=
1
4
Thus, the total area is
1
4
+
1
4
=
1
2
.
Another solution is to find the area using a calculator:
Enter
∫ (
abs
(
(x− 1 )∧ 3
)
,x,0,2
)
and obtain
1
2
.
Example 2
Find the area of the region bounded by the graph of f(x)=x^2 −1, the linesx=−2 and
x=2, and thex-axis.
Step 1: Sketch the graph off(x). (See Figure 13.3-4.)
(+) (+)
- 2 – 1 0 1 2
(–)
y
x
f(x)
Figure 13.3-4
Step 2: Set up the integrals.
Area=
∫− 1
− 2
f(x)dx+
∣∣
∣∣
∫ 1
− 1
f(x)dx
∣∣
∣∣+
∫ 2
1
f(x)dx.