MA 3972-MA-Book April 11, 2018 16:1
Areas and Volumes 295Step 2: Determine the radius of a disc from a cross section.
r= f(x)=√
x− 1Step 3: Set up an integral.
V=π∫ 51(f(x))^2 dx=π∫ 51(√
x− 1) 2
dxStep 4: Evaluate the integral.
V=π∫ 51(√
x− 1) 2
dx=π[(x− 1 )]^51 =π[
x^2
2
−x] 51=π((
52
2− 5
)
−(
12
2− 1
))
= 8 πVerify your result with a calculator.
Example 2
Find the volume of the solid generated by revolving about thex-axis the region bounded by
the graph ofy=
√
cosxwhere 0≤x≤
π
2
, thex-axis, and they-axis.Step 1: Draw a sketch. (See Figure 13.4-8.)
yxy = cos x01π
2Figure 13.4-8Step 2: Determine the radius from a cross section.
r= f(x)=√
cosxStep 3: Set up an integral.
V=π∫π/ 20(√
cosx) 2
dx=π∫π/ 20cosxdx