MA 3972-MA-Book April 11, 2018 16:1
Areas and Volumes 301
y
x
x = y
x = y^2
1
0
(1, 1)
Figure 13.4-14
Intersection points:y=x^2 ;x=y^2 ⇒y=±
√
x.
Setx^2 =
√
x⇒x^4 =x⇒x^4 −x= 0 ⇒x(x^3 −1)= 0 ⇒x=0orx= 1
x=0, y=0(0,0)
x=1, y=1(1,1).
Step 2: Determine the outer and inner radii of a washer.
The outer radius:
x=√yand inner radius:x=y^2.
Step 3: Set up an integral.
V=π
∫ 1
0
(
(√y)^2 −
(
y^2
) 2 )
dy
Step 4: Evaluate the integral.
Enter
∫ (
π∗
(
(√y)∧ 2 −(y∧ 2 )∧ 2
)
, y,0,1
)
and obtain
3 π
10
.
Thus, the volume of the solid is
3 π
10
.
13.5 Rapid Review
- Iff(x)=
∫x
0
g(t)dtand the graph ofgis shown in Figure 13.5-1. Find f(3).
Answer: f( 3 )=
∫ 3
0
g(t)dt=
∫ 1
0
g(t)dt+
∫ 3
1
g(t)dt
= 0. 5 − 1. 5 =− 1