MA 3972-MA-Book April 11, 2018 16:1308 STEP 4. Review the Knowledge You Need to Score High
You can use the symmetry of the regionand obtain the area= 2∫ 20(4−y^2 )dy.
An alternative method is to find the area
by setting up an integral with respect to
thex-axis and expressingx=y^2 asy=√
x
andy=−√
x.- (See Figure 13.8-7.)
A=∫ππ/ 2sin(
x
2)
dxLetu=
x
2
anddu=
dx
2
or 2du=dx.0 xyπ π 2 π
2x
2π
x = 2 x = πf(x) = sin( (Figure 13.8-7
∫
sin(
x
2)
dx=∫
sinu(2du)= 2∫
sinudu=−2 cosu+c=−2 cos(
x
2)
+cA=
∫ππ/ 2sin(
x
2)
dx=[
−2 cos(
x
2)]ππ/ 2=− 2[
cos(
π
2)
−cos(
π/ 2
2)]=− 2
(
cos(
π
2)
−cos(
π
4))=− 2
(
0 −√
2
2)
=√
2- (See Figure 13.8-8.)
Using the Disc Method:
V=π∫ 30(
x^2 + 4) 2
dx=π∫ 30(
x^4 + 8 x^2 + 16)
dx=π[
x^5
5+
8 x^3
3
+ 16 x] 30=π[
35
5+
8(3)^3
3
+16(3)
]
− 0 =843
5
π0 34y y = x^2 + 4Not to scalexFigure 13.8-8
Area
∫k11
x
dx=lnx]k 1 =lnk−ln 1=lnk.
Set lnk=1. Thus,elnk=e^1 ork=e.- (See Figure 13.8-9.)
10- 1
y = 1y = – 1xx = y^2 + 1yFigure 13.8-9