MA 3972-MA-Book April 11, 2018 16:1
308 STEP 4. Review the Knowledge You Need to Score High
You can use the symmetry of the region
and obtain the area= 2
∫ 2
0
(4−y^2 )dy.
An alternative method is to find the area
by setting up an integral with respect to
thex-axis and expressingx=y^2 asy=
√
x
andy=−
√
x.
- (See Figure 13.8-7.)
A=
∫π
π/ 2
sin
(
x
2
)
dx
Letu=
x
2
anddu=
dx
2
or 2du=dx.
0 x
y
π π 2 π
2
x
2
π
x = 2 x = π
f(x) = sin( (
Figure 13.8-7
∫
sin
(
x
2
)
dx=
∫
sinu(2du)
= 2
∫
sinudu=−2 cosu+c
=−2 cos
(
x
2
)
+c
A=
∫π
π/ 2
sin
(
x
2
)
dx=
[
−2 cos
(
x
2
)]π
π/ 2
=− 2
[
cos
(
π
2
)
−cos
(
π/ 2
2
)]
=− 2
(
cos
(
π
2
)
−cos
(
π
4
))
=− 2
(
0 −
√
2
2
)
=
√
2
- (See Figure 13.8-8.)
Using the Disc Method:
V=π
∫ 3
0
(
x^2 + 4
) 2
dx
=π
∫ 3
0
(
x^4 + 8 x^2 + 16
)
dx
=π
[
x^5
5
+
8 x^3
3
+ 16 x
] 3
0
=π
[
35
5
+
8(3)^3
3
+16(3)
]
− 0 =
843
5
π
0 3
4
y y = x^2 + 4
Not to scale
x
Figure 13.8-8
Area
∫k
1
1
x
dx=lnx]k 1 =lnk−ln 1=lnk.
Set lnk=1. Thus,elnk=e^1 ork=e.
- (See Figure 13.8-9.)
1
0
- 1
y = 1
y = – 1
x
x = y^2 + 1
y
Figure 13.8-9