MA 3972-MA-Book April 11, 2018 16:5
More Applications of Definite Integrals 321
Total Distance Traveled
∫ 2
1
v(t)dt+
∫ 3
2
−v(t)dt+
∫ 4
3
v(t)dt.
Enter
∫
(y1(x),x,1,2)and obtain
1
4
.
Enter
∫
(−y1(x),x,2,3)and obtain
1
4
.
Enter
∫
(y1(x),x,3,4)and obtain
9
4
.
Thus, the total distance traveled is
(
1
4
+
1
4
+
9
4
)
=
11
4
.
Example 4
The acceleration function of a moving particle on a coordinate line isa(t)=−4 andv 0 =
12 for 0≤t≤8. Find the total distance traveled by the particle during 0≤t≤8.
a(t)=− 4
v(t)=
∫
a(t)dt=
∫
− 4 dt=− 4 t+C
Sincev 0 = 12 ⇒−4(0)+C=12 orC= 12.
Thus,v(t)=− 4 t+ 12.
Total Distance Traveled=
∫ 8
0
∣∣
− 4 t+ 12
∣∣
dt.
Let− 4 t+ 12 = 0 ⇒t= 3.
|− 4 t+ 12 |=
{
− 4 t+ 12 if 0≤t≤ 3
−(− 4 t+12) ift> 3
∫ 8
0
∣∣
− 4 t+ 12
∣∣
dt=
∫ 3
0
∣∣
− 4 t+ 12
∣∣
dt+
∫ 8
3
−(− 4 t+12)dt
=
[
− 12 t^2 + 12 t
] 3
0 +
[
2 t^2 + 12 t
] 8
3
= 18 + 50 = 68.
Thus, the total distance traveled by the particle is 68.
Example 5
The velocity function of a moving particle on a coordinate line isv(t)=3 cos(2t) for
0 ≤t≤ 2 π. Using a calculator:
(a) Determine when the particle is moving to the right.
(b) Determine when the particle stops.
(c) Determine the total distance traveled by the particle during 0≤t≤ 2 π.