MA 3972-MA-Book April 11, 2018 12:1130 STEP 2. Determine Your Test Readiness- f
(
π
2)
= 3 ⇒(
π
2,3
)
is on the graph.f′(
π
2)
=− 1 ⇒slope of the tangent atx=
π
2
is− 1.
Equation of tangent line:y− 3 =− 1(
x−
π
2)
ory=−x+
π
2+ 3.
Thus, f(
π
2+
π
180)
≈−(
π
2+
π
180)+
π
2+ 3
≈ 3 −
π
180≈ 2. 98255
≈ 2. 983.
Chapter 11
29.∫
1 −x^2
x^2
dx=∫ (
1
x^2−
x^2
x^2)
dx=
∫ (
1
x^2− 1
)
dx=
∫
(x−^2 −1)dx=
x−^1
− 1
−x+C=−
1
x
−x+CKEY IDEA You can check the answer by
differentiating your result.- Letu=ex+1;du=exdx.
f(x)=∫
ex
ex+ 1
dx=∫
1
u
du=ln|u|+C=ln|ex+ 1 |+C
f(0)=ln|e^0 + 1 |+C=ln (2)+C
Sincef(0)=ln 2⇒ln (2)+C=ln 2
⇒C= 0.Thus, f(x)=ln (ex+1) andf(ln 2)
=ln (eln 2+1)=ln (2+1)
=ln 3.- See the figure below.
To find the points of intersection, set
sin 2x=1
2
⇒ 2 x=sin−^1(
1
2)⇒ 2 x=
π
6
or 2x=
5 π
6
⇒x=
π
12
orx=
5 π
12.
Volume of solid=π∫ 5 π/ 12π/ 12[
(sin 2x)^2 −(
1
2) 2 ]
dx.Using your calculator, you obtain:
Volume of solid≈(0.478306)π
≈ 1. 50264 ≈ 1. 503.Chapter 1232.∫ 411
√
x
dx=∫ 41x−^1 /^2 dx=
x^1 /^2
1 / 2] 41
= 2 x^1 /^2] 4
1
=2(4)^1 /^2 −2(1)^1 /^2 = 4 − 2 = 233.∫k− 1(2x−3)dx=x^2 − 3 x]k
− 1=(k^2 − 3 k)−((−1)^2
−3(−1))
=k^2 − 3 k−(1+3)
=k^2 − 3 k− 4
Setk^2 − 3 k− 4 = 6 ⇒k^2 − 3 k− 10 = 0
⇒(k−5)(k+2)= 0 ⇒k=5ork=− 2.