172 STEP 4. Review the Knowledge You Need to Score High
- (a) Summarize the information off′on
a number line.
.5 2.5
decr. incr.
rel. minl ′ –+ 0lSincefhas only one relative
extremum, it is the absolute
extremum. Thus, atx=3, it is an
absolute minimum.
(b) The functionfis decreasing on the
interval (−∞, 3) and increasing on
(3,∞).
(c)
f′f′′
f++ 3incrconcave
upwardconcave
upward0 incrNo change of concavity⇒No point
of inflection.
(d) The functionfis concave upward for
the entire domain (−∞,∞).
(e) Possible sketch of the graph forf(x).
(See Figure 8.7-1.)3(3,–2)0 xy
fFigure 8.7-1- (Calculator) (See Figure 8.7-2.)
Figure 8.7-2Step 1: Differentiate:
2 x+ 2 ydy
dx= 0 ⇒
dy
dx=−
x
y.
Step 2: Set
dy
dx=− 1 ⇒
−x
y=− 1 ⇒
y=x.
Step 3: Solve fory:x^2 +y^2 = 36 ⇒
y^2 = 36 −x^2 ;
y=±√
36 −x^2.
Step 4: Thus,y=x⇒±√
36 −x^2 =
x⇒ 36 −x^2 =x^2 ⇒
36 = 2 x^2 orx=± 3√
2.- (Calculator) (See Figure 8.7-3.)
Step 1: Distance formula:
z=√
√ (x−1)^2 +(x^3 )^2 =
(x−1)^2 +x^6.Figure 8.7-3