More Applications of Derivatives 1998 7 6 5 4 3 2 10123456789
tvv(t)(feet/sec)(seconds)Figure 9.7-1- Find the Cartesian equation for the curve
defined byr=4 cosθ. - The motion of an object is modeled by
x=5 sint, y= 1 −cost. Find the
y-coordinate of the object at the moment
when itsx-coordinate is 5. - Calculate 4u− 3 vifu=
〈
6,− 1〉
and
v=〈
−4, 3〉
.- Determine the symmetry, if any, of the
graph ofr=2 sin(4θ). - Find the magnitude of the vector 3i+ 4 j.
9.8 Solutions to Practice Problems
Part A The use of a calculator is not
allowed.- Equation of tangent line:
y=f(a)+f′(a)(x−a)
f′(x)=
1
4
( 1 +x)−^3 /^4 (1)=1
4
( 1 +x)−^3 /^4f′(0)=1
4
and f(0)=1;thus,y= 1 +1
4
(x− 0 )= 1 +1
4
x.f(0.1)= 1 +1
4
(0.1)= 1. 025
- f(a+Δx)≈ f(a)+ f′(a)Δx
Letf(x)=^3√
xand f( 28 )=
f( 27 + 1 ).
Thenf′(x)=1
3
(x)−^2 /^3 ,f′( 27 )=1
27
, and f( 27 )=3.
f( 27 + 1 )≈ f( 27 )+f′( 27 )( 1 )≈
3 +(
1
27)
( 1 )≈ 3. 037- f(a+Δx)≈ f(a)+f′(a)Δx
Convert to radians:
46
180
=
a
π⇒a=
23 π
90and 1◦=
π
180;
45 ◦=
π
4.
Let f(x)=cosxandf(45◦)=f(
π
4)
=cos(
π
4)
=√
2
2.
Thenf′(x)=−sinxand
f′( 45 ◦)=f′(
π
4)
=−√
2
2
f( 46 ◦)= f(
23 π
90)
= f(
π
4+
π
180)f(
π
4+
π
180)
≈f(
π
4)
+f′(
π
4)(
π
180)
≈√
2
2−
(√
2
2)(
π
180)≈
√
2
2−
π√
2
360