212 STEP 4. Review the Knowledge You Need to Score High
Example 9
Evaluate∫
sinx− 1
cos
dx.Rewrite∫(
sinx
cosx−
1
cosx)
dx=∫
(tanx −secx)dx=∫
tanxdx−∫
secxdx=ln∣∣
secx∣∣
−ln∣∣
secx+tanx∣∣
+C=ln∣
∣∣
∣secx
secx+tanx∣
∣∣
∣+C
or−ln∣∣
sinx+ 1∣∣
+C.Example 10Evaluate∫
e^2 x
ex
dx.Rewrite the integral as∫
exdx=ex+C.Example 11
Evaluate∫
3
1 +x^2
dx.Rewrite as 3∫
1
1 +x^2
dx=3 tan−^1 x+C.Example 12
Evaluate∫
1
√
9 −x^2dx.Rewrite as∫
1
√
32 −x^2dx=sin−^1(
x
3)
+C.Example 13
Evaluate∫
7 xdx.
∫
7 xdx=
7 x
ln 7+C
KEY IDEAReminder: You can always check the result by taking the derivative of the answer.TIP • Be familiar with the instructions for the different parts of the exam before the day of
exam. Review the instructions in the practice tests provided at the end of this book.