224 STEP 4. Review the Knowledge You Need to Score High
- Evaluate
∫
cos(2x)dx.Answer:Letu= 2 xand obtain1
2
sin 2x+C.- Evaluate
∫
lnx
x
dx.Answer:Letu=lnx;du=1
xdxand obtain
(lnx)^2
2+C.
- Evaluate
∫
xex
2
dx.Answer:Letu=x^2 ;du
2
=xdxand obtainex^2
2+C.
8.
∫
xcosxdx
Answer:Letu=x,du=dx,dv=cosxdx, andv=sinx,
then∫
xcosxdx=xsinx−∫
sinxdx=xsinx+cosx+C.9.
∫
5
(x+3)(x−7)
dxAnswer:∫
5
(x+3)(x−7)
dx=∫ (
− 1 / 2
x+ 3+
1 / 2
x− 7)
dx=−
1
2
ln∣∣
x+ 3∣∣
+1
2
ln∣∣
x− 7∣∣
+C=1
2
ln∣∣
∣∣x−^7
x+ 3∣∣
∣∣+C10.5 Practice Problems
Evaluate the following integrals in problems
1 to 25. No calculators are allowed. (However,
you may use calculators to check your
results.)
1.
∫
(x^5 + 3 x^2 −x+1)dx2.
∫ (√
x−1
x^2)
dx3.
∫
x^3 (x^4 −10)^5 dx4.
∫
x^3√
x^2 + 1 dx5.
∫
x^2 + 5
√
x− 1dx6.
∫
tan(
x
2)
dx7.
∫
xcsc^2 (x^2 )dx8.
∫
sinx
cos^3 xdx9.
∫
1
x^2 + 2 x+ 10
dx10.
∫
1
x^2
sec^2(
1
x)
dx11.
∫
(e^2 x)(e^4 x)dx12.
∫
1
xlnx
dx