234 STEP 4. Review the Knowledge You Need to Score High
Figure 11.1-1Riemann sum=∑^3i= 1f(ci)Δxi=f(c 1 )Δx 1 + f(c 2 )Δx 2 +f(c 3 )Δx 3=7(4)+39(4)+103(4)= 596
The Riemann sum is 596.Example 2
Find the Riemann sum for f(x)=x^3 +1 over the interval [0, 4] using 4 subdivisions of
equal length and the midpoints of the intervals asci. (See Figure 11.1-2.)Figure 11.1-2Length of an intervalΔxi=
b−a
n=
4 − 0
4
=1;ci= 0. 5 +(i−1)=i− 0 .5.Riemann sum=∑^4i= 1f(ci)Δxi=∑^4i= 1[
(i− 0 .5)^3 + 1]
1=
∑^4i= 1(i− 0 .5)^3 +1.Enter∑(
(1− 0 .5)^3 +1,i,1,4)
= 66.
The Riemann sum is 66.Definition of a Definite Integral
Letf be defined on [a,b] with the Riemann sum forfover [a,b] written as∑n
i= 1f(ci)Δxi.
If max Δxi is the length of the largest subinterval in the partition and the
lim
maxΔxi→ 0∑n
i= 1f(ci)Δxiexists, then the limit is denoted by:lim
maxΔxi→ 0∑ni= 1f(ci)Δxi=∫baf(x)dx.∫baf(x)dxis the definite integral of ffromatob.