Definite Integrals 237The remaining properties are best illustrated in terms of the area under the curve of the
function as discussed in the next section.TIP • Do not forget that∫− 30f(x)dx=−∫ 0− 3f(x)dx.11.2 Fundamental Theorems of Calculus
Main Concepts:First Fundamental Theorem of Calculus, Second Fundamental
Theorem of CalculusFirst Fundamental Theorem of Calculus
Iff is continuous on [a,b] andFis an antiderivative of fon [a,b], then
∫baf(x)dx=F(b)−F(a).Note:F(b)−F(a) is often denoted asF(x)]b
a.
Example 1Evaluate∫ 20(
4 x^3 +x− 1)
dx.∫ 20(
4 x^3 +x− 1)
dx=
4 x^4
4+
x^2
2
−x] 20=x^4 +
x^2
2
−x] 20=(
24 +22
2
− 2
)
−(0)= 16Example 2Evaluate∫π−πsinxdx.
∫π−πsinxdx=−cosx]π
−π=[−cosπ]−[−cos(−π)]=[−(−1)]−[−(−1)]=(1)−(1)= 0Example 3If∫k− 2(4x+1)dx=30,k>0, findk.
∫k− 2(4x+1)dx= 2 x^2 +x]k
− 2 =(
2 k^2 +k)
−(
2(−2)^2 − 2)= 2 k^2 +k− 6