Definite Integrals 24111.3 Evaluating Definite Integrals
Main Concepts:Definite Integrals Involving Algebraic Functions;
Definite Integrals Involving Absolute Value; Definite
Integrals Involving Trigonometric, Logarithmic, and
Exponential Functions; Definite Integrals Involving
Odd and Even FunctionsTIP • If the problem asks you to determine the concavity off′(notf), you need to know
iff′′is increasing or decreasing, or iff′′′is positive or negative.Definite Integrals Involving Algebraic FunctionsExample 1Evaluate∫ 41x^3 − 8
√
x
dx.Rewrite:∫ 41x^3 − 8
√
x
dx=∫ 41(
x^5 /^2 − 8 x−^1 /^2)
dx=
x^7 /^2
7 / 2−
8 x^1 /^2
1 / 2] 41=
2 x^7 /^2
7
− 16 x^1 /^2] 41=(
2(4)^7 /^2
7−16(4)^1 /^2
)
−(
2(1)^7 /^2
7−16(1)^1 /^2
)
=142
7
.
Verify your result with a calculator.Example 2Evaluate∫ 20x(x^2 −1)^7 dx.Begin by evaluating the indefinite integral∫
x(x^2 −1)^7 dx.Letu=x^2 −1;du= 2 xdxor
du
2
=xdx.Rewrite:∫
u^7 du
2=
1
2
∫
u^7 du=1
2
(
u^8
8)
+C=
u^8
16+C=
(x^2 −1)^8
16+C.
Thus, the definite integral∫ 20x(x^2 −1)^7 dx=
(x^2 −1)^8
16] 20
=(2^2 −1)^8
16
−
(0^2 −1)^8
16
=
38
16
−
(−1)^8
16
=
38 − 1
16
=410.
Verify your result with a calculator.