Definite Integrals 245Definite Integrals Involving Odd and Even Functions
Iff is an even function, that is,f(−x)=f(x), and is continuous on [−a,a], then
∫a
−af(x)dx= 2∫a0f(x)dx.Iff is an odd function, that is,F(x)=−f(−x), and is continuous on [−a,a], then
∫a
−af(x)dx= 0.Example 1
Evaluate
∫π/ 2−π/ 2cosxdx.Sincef(x)=cosxis an even function,
∫π/ 2−π/ 2cosxdx= 2∫π/ 20cosxdx= 2 [sinx]π/ 02 = 2[
sin(
π
2)
−sin( 0 )]= 2 ( 1 − 0 )=2.
Verify your result with a calculator.Example 2
Evaluate
∫ 3− 3(
x^4 −x^2)
dx.Sincef(x)=x^4 −x^2 is an even function, i.e., f(−x)=f(x), thus
∫ 3− 3(
x^4 −x^2)
dx= 2∫ 30(
x^4 −x^2)
dx= 2[
x^5
5−
x^3
3] 30= 2[(
35
5−
33
3
)
− 0]
=396
5
.
Verify your result with a calculator.Example 3
Evaluate
∫π−πsinxdx.Sincef(x)=sinxis an odd function, i.e.,f(−x)=−f(x), thus
∫π−πsinxdx=0.Verify your result algebraically.
∫π
−πsinxdx=−cosx]π
−π=(−cosπ)−[−cos(−π)]
=[−(− 1 )]−[−( 1 )]=( 1 )−( 1 )= 0
You can also verify the result with a calculator.