Definite Integrals 25111.8 Solutions to Practice Problems
Part A The use of a calculator is not
allowed.1.
∫ 0− 1(
1 +x−x^3)
dx=x+
x^2
2−
x^4
4] 0− 1
= 0 −[
(−1)+(−1)^2
2
−
(−1)^4
4
]=
3
4
- Letu=x−2;du=dx.
∫
(x−2)^1 /^2 dx=
∫
u^1 /^2 du=
2 u^1 /^2
3+C
=
2
3
(x−2)^3 /^2 +CThus,∫ 116(x−2)^1 /^2 dx=2
3
(x−2)^3 /^2] 11
6=2
3
[
(11−2)^3 /^2−(6−2)^3 /^2]=
2
3
(27−8)=
38
3
.
- Letu=t+1;du=dtandt=u−1.
Rewrite:∫
t
t+ 1
dt=∫
u− 1
u
du=
∫ (
1 −1
u)
du
=u−ln|u|+C
=t+ 1 −ln∣
∣t+ 1
∣
∣+C
∫ 31t
t+ 1dt=[
t+ 1 −ln∣
∣t+ 1
∣
∣]^31=[
(3)+ 1 −ln∣∣
3 + 1∣∣]−(
(1)+ 1 −ln∣∣
1 + 1∣∣)= 4 −ln 4− 2 +ln 2
= 2 −ln 4+ln 2
= 2 −ln(2)^2 +ln 2
= 2 −2ln2+ln 2
= 2 −ln 2.4.Setx− 3 =0;x=3.∣∣
x− 3∣∣
={
(x−3) ifx≥ 3
−(x−3) ifx< 3
∫ 60∣∣
x− 3∣∣
dx=∫ 30−(x−3)dx+
∫ 63(x−3)dx=
[
−x^2
2
+ 3 x] 30+
[
x^2
2
− 3 x] 63=(
−(3)^2
2
+3(3)
)
− 0+
(
62
2−3(6)
)
−(
32
2−3(3)
)=
9
2
+
9
2
= 9
5.
∫k0(6x−1)dx= 3 x^2 −x]k
0 =^3 k(^2) −k
Set 3k^2 −k= 4 ⇒ 3 k^2 −k− 4 = 0
⇒(3k−4)(k+1)= 0
⇒k=
4
3
ork=−1.Verify your results by evaluating
∫ 4 / 30(6x−1)dxand∫− 10(6x−1)dx.