270 STEP 4. Review the Knowledge You Need to Score High
Step 3. Evaluate the integrals.
∫− 1− 2(
x^2 − 1)
dx=
x^3
3
−x]− 1− 2=
2
3
−
(
−2
3
)
=4
3
∣
∣∣
∣∫ 1− 1(
x^2 − 1)
dx∣
∣∣
∣=∣∣
∣∣
∣x^3
3
−x] 1− 1∣∣
∣∣
∣=
∣
∣∣
∣−2
3
−
(
2
3)∣∣
∣∣=∣
∣∣
∣−4
3
∣
∣∣
∣=4
3
∫ 21(
x^2 − 1)
dx=
x^3
3
−x] 21=
2
3
−
(
−2
3
)
=4
3
Thus, the total area =4
3
+
4
3
+
4
3
= 4.
Note: Since f(x)=x^2 −1 is an even function, you can use the symmetry of the
graph and set area = 2(∣∣
∣∣∫ 10f(x)dx∣∣
∣∣+∫ 21f(x)dx)
.
An alternate solution is to find the area using a calculator.
Enter∫
(abs(x∧ 2 − 1 ),x,−2, 2)and obtain 4.Example 3
Find the area of the region bounded byx=y^2 ,y=−1, andy=3. See Figure 12.3-5.30
–1 x = y^2xyFigure 12.3-5Area =∫ 3− 1y^2 dy=
y^3
3] 3− 1