Areas, Volumes, and Arc Lengths 291Example 2
Find the length of the spiralr=eθfromθ=0toθ=π.
Step 1. Differentiate
dr
dθ
=eθ.
Step 2. Squarer^2 =e^2 θ.
Step 3. L=
∫π0√
e^2 θ+e^2 θdθ=∫π0√
2 e^2 θdθ=√
2∫π0eθdθ=√
2 eθ∣
∣π 0=
√
2 eπ−√
2Integration of a Vector-Valued Function
Integrating a Vector Function
For a vector-valued functionr(t)=
〈
x(t),y(t)〉
,∫
r(t)dt=∫
x(t)dt·i +∫
y(t)
dt·j.
Example 1
The acceleration vector of a particle at any timet≥0isa(t)=
〈
et,e^2 t〉. If at timet=0, its
velocity isi+jand its displacement is 0, find the functions for the position and velocity at
any timet.
Step 1. a(t)=
〈
et,e^2 t〉
,sov(t)=∫
a(t)dt=∫
x(t)dt·i+∫
y(t)dt·jv(t)=∫
etdt·i+∫
e^2 tdt·j=et·i+e^2 t
2
·j+C. Since velocity att = 0 is knownto bei + j,i+1
2
·j+C=i+j, andC=1
2
·j; therefore,v(t)=et·i+
e^2 t
2
·j+1
2·j=〈
et,
e^2 t+ 1
2〉
.Step 2. The position functions(t)=
∫
v(t)dt=∫
etdt·i+∫
e^2 t+ 1
2
dt·j.s(t)=∫
v(t)dt=∫
etdt·i+∫
e^2 t+ 1
2
dt· j=et·i+(
e^2 t+ 2 t
4)
·j+C.Displacement is 0 at t =0,soi +1
4
·j +C =0 and C =−i −1
4
·j.The position functions(t)=et·i+(
e^2 t+ 2 t
4)
·j −i−1
4
·j =(et− 1 )i+
(
e^2 t+ 2 t− 1
4)
j=〈
et−1,
e^2 t+ 2 t− 1
4〉
.Length of a Vector Curve
The length of a curve defined by the vector-valued functionr(t)=
〈
x(t),y(t)〉
traced fromt=atot=biss=
∫ba∥∥
r′(t)∥∥
dt.