Areas, Volumes, and Arc Lengths 301- Volume of solid by revolvingR:
VR=
∫ 40π( 3 x)^2 dx=π∫ 409 x^2 dx=π[
3 x^2] 4
0 =^192 πSet∫ 40π( 3 x)^2 dx=192 π
2
⇒ 3 a^3 π= 96 π
a^3 = 32
a=( 32 )^1 /^3 = 2 ( 2 )^2 /^3You can verify your result by evaluating
∫2(2) 2 / 30π( 3 x)^2 dx.The result is 96π.Part B Calculators are allowed.
- (See Figure 12.9-10.)
y y = x 3
y = x^20 1 xFigure 12.9-10Step 1. Using the Washer Method:
Points of intersection: Set
x^3 =x^2 ⇒x^3 −x^2 = 0 ⇒
x^2 (x−1)=0orx=1.
Outer radius=x^2 ;
Inner radius=x^3.Step 2. V=π∫ 10((
x^2) 2
−(
x^3) 2 )
dx=π∫ 10(x^4 −x^6 )dxStep 3. Enter∫
(π(x∧ 4 −x∧6),x,0,1)and obtain
2 π
35.
- (See Figure 12.9-11.)
yx022–2–2Figure 12.9-11Step 1. x^2 +y^2 = 4 ⇒y^2 = 4 −x^2 ⇒
y=±√
4 −x^2
Lets=a side of an equilateral
triangles= 2√
4 −x^2.
Step 2. Area of a cross section:A(x)=
s^2√
3
4=
(
2√
4 −x^2) (^2) √
3
4
.
Step 3. V=∫ 2− 2(
2√
4 −x^2) 2 √ 3
4
dx=
∫ 2− 2√
3(4−x∧2)dxStep 4. Enter∫ (√
(3)∗(4−x^2 ),x, −2, 2)and obtain32
√
3
3