Areas, Volumes, and Arc Lengths 307(c)a(t)=v′(t)
Enterd(x∗cos(x∧ 2 +1), x)|x=2 and
obtain 7.95506.
Thus, the velocity of the particle is
increasing att=2, sincea(2)>0.- (See Figure 12.10-6)
[−π,π] by [−1,2]
Figure 12.10-6(a)Point of Intersection: Use the
[Intersection] function of the calculator
and obtain (0.517757, 0.868931).Area =∫ 0. 517750(cosx−xex)dxEnter∫
(cos(x)−x∗e∧x, x,0, 0. 51775 )and obtain 0.304261.
The area of the region is approximately
0.304.
(b) Step 1. Using the Washer Method:
Outer radius=cosx;
Inner radius=xex.V=π∫ 0. 517750
[
(cosx)^2 −(xex)^2]
dxStep 2. Enter∫ (
π((cos(x)∧ 2 )−(x∗e∧(x))∧ 2)
, x,0. 51775)and obtain 1.16678.
The volume of the solid is
approximately 1.167.- Convert to a parametric representation
withx=rcosθ=5 cosθcos 2θand
y=rsinθ=5 cos 2θsinθ. Differentiate
with respect toθ.
dx
dθ
=−5 cos 2θsinθ−10 sin 2θsinθand
dy
dθ
=5 cos 2θcosθ−10 sin 2θsinθ.Divide to find
dy
dx=
5 cos 2θsinθ−10 sin 2θsinθ
−5 cos 2θsinθ−10 sin 2θsinθ=
−cos 2θcosθ+2 sin 2θsinθ
cos 2θsinθ+2 sin 2θsinθ. Evaluated
atθ=
3 π
2,
dy
dx=0.
The slope of the tangent line is zero,
including a horizontal tangent.32.∫
2
x^2 − 4 xdx=∫
2
x(x−4)dxcan beintegrated with a partial fractiondecomposition. SinceA
x+
B
x− 4=
2
x(x−4),
A=
− 1
2
andB=1
2
. Therefore,