More Applications of Definite Integrals 34313.12 Solutions to Cumulative Review Problems
- 3 ey=x^2 y
3 ey
dy
dx
= 2 xy+
dy
dx(
x^2)3 ey
dy
dx−
dy
dx
x^2 = 2 xydy
dx(
3 ey−x^2)
= 2 xydy
dx=
2 xy
3 ey−x^2- Letu=x^3 +1;du= 3 x^2 dxor
du
3
=x^2 dx.∫
x^2
x^3 + 1
dx=∫
1
udu
3=1
3
ln|u|+C=
1
3
ln∣∣
x^3 + 1∣∣
+C
∫ 30x^2
x^3 + 1
dx=1
3
ln|x^3 + 1 |] 3
0=
1
3
(ln 2−ln 1)=
ln 2
3- (a) F(− 2 )=
∫− 2− 2f(t)dt= 0F( 0 )=
∫ 0− 2f(t)dt=1
2
( 4 + 2 ) 2 = 6
(b) F′(x)=f(x);F′(0)=2 andF′(2)= 4.
(c)Since f>0on[−2, 4],Fhas a
maximum value atx=4.
(d) The functionfis increasing on (1, 3),
which implies that f′>0 on (1, 3).
Thus,Fis concave upward on (1, 3).
(Note: f′is equivalent to the 2nd
derivative ofF.)- (a)
dy
dx
=
y
2 x+ 1
;f(0)= 2dy
dx∣∣
∣∣
x= 0=
2
2 ( 0 )+ 1
= 2 ⇒m=2atx= 0.y−y 1 =m(
x−x 1)y− 2 = 2 (x− 0 )⇒y= 2 x+ 2
The equation of the tangent tof at
x=0isy= 2 x+2.
(b) f(0.1)=2(0.1)+ 2 = 2. 2
(c) Solve the differential equation:
dy
dx=
y
2 x+ 1.
Step 1. Separate variables:
dy
y=
dx
2 x+ 1
Step 2. Integrate both sides:
∫
dy
y=
∫
dx
2 x+ 1ln|y|=1
2
ln| 2 x+ 1 |+C.Step 3. Substitute given values (0, 2):ln 2=1
2
ln 1+C⇒C=ln 2ln|y|=1
2
∣∣
2 x+ 1∣∣
+ln 2ln|y|−1
2
∣∣
2 x+ 1∣∣
=ln 2ln∣
∣∣
∣y
( 2 x+ 1 )^1 /^2∣
∣∣
∣=ln 2eln∣∣
∣∣( 2 x+y 1 ) 1 / 2∣∣
∣∣
=eln 2
y
( 2 x+ 1 )^1 /^2= 2
y= 2 ( 2 x+ 1 )^1 /^2.