More Applications of Definite Integrals 345s ̄(0)=(
−sin 0−1
2
(0)
)
̄ı+
(√
3
2
(0)+cos 0)
j ̄+C= 00 ̄ı+ 1 j ̄+C= 0
C=−j ̄s ̄(θ)=(
−sinθ−1
2
θ)
̄ı+
(√
3
2
θ+cosθ− 1)
j ̄.Substituting inθ=π:s ̄(π)=(
−sinπ−1
2
π)
̄ı+
(√
3
2
π+cosπ− 1)
j ̄s ̄(π)=(
0 −1
2
π)
̄ı+(√
3
2
π− 1 − 1)
j ̄s ̄(π)=−(
π
2)
̄ı+(√
3
2
π− 2)
j ̄s ̄(π)=−
π
2ı ̄+(√
3 − 4
2π)
j ̄.- Integrate
∫
x^2 e^5 x−^2 dxby parts. Let
u=x^2 ,du= 2 xdx,dv=e^5 x−^2 dx, and
v=
e^5 x−^2
5. Then,
∫
x^2 e^5 x−^2 dx=
x^2 e^5 x−^2
5−
2
5
∫
xe^5 x−^2 dx.The remaining integral can be evaluated by
parts, usingu=x,du=dx,dv=e^5 x−^2 dx,andv=
e^5 x−^2
5·
∫
x^2 e^5 x−^2 dx=
x^2 e^5 x−^2
5−
2
5
[
xe^5 x−^2
5−
1
5
∫
e^5 x−^2 dx]=
x^2 e^5 x−^2
5−
2
5
[
xe^5 x−^2
5−
1
5
·
e^5 x−^2
5]=
x^2 e^5 x−^2
5−
2 xe^5 x−^2
25+
2 e^5 x−^2
125+C.
- The path is defined byx=t−2,y=sin^2 t.
Since
dx
dt
=1 and
dy
dt
=2 sintcost,
dy
dx
=
2 sintcost
1. This is the slope of a
tangent line to the curve, and when the
slope is zero, the curve will reach either a
maximum or a minimum. The slope
2 sintcost=0 when sint=0 or when
cost=0. The first equation gives ust= 0
ort=πand the second,t=
π
2
. The
second derivative,
d^2 y
dx^2
=−2 sin^2 t+2 cos^2 t=2 cos 2t.
Evaluating at each of the possible values of
t, we find 2 cos 2t∣∣
t= 0 =2, 2 cos 2t∣∣
t=π=2,
and 2 cos 2t|t=π 2 =−2. The maximum value
will occur when the second derivative is
negative, so the maximumy-value is
achieved whent=
π
2,x=
π
2− 2 =
π− 4
2,
andy=sin^2
π
2