348 STEP 4. Review the Knowledge You Need to Score High
Example 1
Determine whether the series∑∞
n= 11
5 n
converges or diverges. If it converges, find its sum.Step 1: Find the first few partial sums.
s 1 =1
5
= 0 .2,s 2 =1
5
+
1
25
=
6
25
= 0. 24 s 3 =1
5
+
1
25
+
1
125
=
31
125
= 0. 248
s 4 =1
5
+
1
25
+
1
125
+
1
625
=
156
625
= 0. 2496
Step 2: The sequence of partial sums{ 0 .2, 0.24, 0.248, 0.2496,...}converges to 0.25,
so the series converges, and its sum
∑∞
n= 11
5 n= 0 .25.
Example 2
Find the sum of the series∑∞
n= 1(5an− 3 bn), given that∑∞
n= 1an=4 and∑∞
n= 1bn=8.Step 1:∑∞
n= 1(5an− 3 bn)=∑∞
n= 15 an−∑∞
n= 13 bn= 5∑∞
n= 1an− 3∑∞
n= 1bnStep 2: 5∑∞
n= 1an− 3∑∞
n= 2bn=5(4)−3(8)= 20 − 24 =− 414.2 Types of Series
Main Concepts:p-Series, Harmonic Series, Geometric Series, Decimal Expansionp-SeriesThep-series is a series of the form 1+1
2 p+
1
3 p+
1
4 p+···+
1
np+···=
∑∞n= 11
np. The
p-series converges whenp>1, and diverges when 0<p≤1.Harmonic SeriesThe harmonic series 1+1
2
+
1
3
+
1
4
+···+
1
n+···=
∑∞n= 11
nis ap-series withp=1. Theharmonic series diverges.Geometric SeriesA geometric series is a series of the form∑∞
n= 1arn−^1 wherea=/0. A geometric series convergeswhen|r|<1. The sum of the firstnterms of a geometric series issn=
a(1−rn)
1 −r. The sum
of the series∑∞
n= 1arn−^1 =nlim→∞sn=nlim→∞
a(1−rn)
1 −r=
a
1 −r