Series 357The series∑∞
n= 1(−1)n
2 k+ 1
5 k− 1=−
3
4
+
5
9
−
1
2
.... Note that limn→∞an=nlim→∞
2 n+ 1
5 n− 1
=nlim→∞
2 n+ 1 /n
5 n− 1 /n=
nlim→∞2 +
1
n
5 −1
n=
2
5
/=0.
Therefore, according to the Divergence Test, the series diverges.14.5 Power Series
Main Concepts:Power Series, Radius and Interval of ConvergenceA power series is a series of the form∑∞
n= 1cnxn, wherec 1 ,c 2 ,c 3 ,...are constants, andxis a
variable.Radius and Interval of Convergence
A power series centered atx=aconverges only forx=a, for all real values ofx, or for all
xin some open interval (a−R,a+R), called the interval of convergence. The radius of
convergence isR. If the series converges on (a−R,a+R), then it diverges ifx<a−Ror
x>a+R: but convergence or divergence must be investigated individually atx=a−R
and atx=a+R.
Example 1
Find the values ofxfor which the series 1+x+
x^2
2!+
x^3
3!+···+
xn
n!+···converges.Step 1: Use the ratio test. limn→∞∣∣
∣∣an+^1
an∣∣
∣∣=lim
n→∞∣∣
∣∣ xn+ 1
(n+1)!·
n!
xn∣∣
∣∣=lim
n→∞∣∣
∣∣ x
n+ 1∣∣
∣∣= 0Step 2: The series converges absolutely, so∑∞
n= 1xn
n!
converges for all realx.Example 2
Find the interval of convergence for the series∑∞
n= 1(x−2)n
n.
Step 1: Use the ratio test. limn→∞∣∣
∣∣an+^1
an∣∣
∣∣=lim
n→∞∣∣
∣∣(x−2)n+ 1
n+ 1·
n
(x−2)n∣∣
∣∣=lim
n→∞∣∣
∣∣n(x−2)
n+ 1∣∣
∣∣=|x− 2 |Step 2: The series converges absolutely when|x− 2 | < 1,− 1 < x − 2 < 1, or
1 <x<3.Step 3: Whenx=1, the series becomes∑∞
n= 1(−1)n
n=− 1 +
1
2
−
1
3
+
1
4
−
1
5
···. Since 1>
1
2>
1
3
>
1
4
>
1
5
>···and limn→∞1
n
=0, this alternating series converges. Whenx=3, the series becomes∑∞
n= 11
n= 1 +
1
2
+
1
3
+
1
4
+
1
5
···which is a p-series withp=1, and therefore diverges. Therefore, the interval of convergence is [1, 3).