362 STEP 4. Review the Knowledge You Need to Score High
Step 2: For three decimal place accuracy, we want to find the value of nfor which
the remainder is less than or equal to 0.0005. Choose x 0 =1 in the interval
(0, 1). All derivatives ofex are equal toex, and therefore|f(n+1)(x)|≤e,soM=e·∣
∣∣
∣Rn(
1
2)∣∣
∣∣≤ e
(n+1)!∣
∣∣
∣1
2
− 1
∣
∣∣
∣n+ 1
and
e
(n+1)!∣
∣∣
∣1
2
− 1
∣
∣∣
∣n+ 1
=
e
2 n+^1 ·(n+1)!≤
0 .0005 whenn≥4.Step 3:√
e=∑^4
n= 01
2 n·n!= 1 +
1
2
+
1
22 ·2!
+
1
23 ·3!
+
1
24 ·4!
= 1. 6484
Example 2
Estimate sin 4◦accurate to five decimal places.
Step 1: 4 ◦=
π
45
radians. Substitute
π
45
forxin the MacLaurin series that representssinx·sin
π
45=
π
45−
(π/45)^3
3!+
(π/45)^5
5!−
(π/45)^7
7!+···
Step 2: For five decimal place accuracy, we must find the value ofnfor which the absolute
error is less than or equal to 5∣ × 10 −^6. For allx,|f(n+1)(x)|≤1. Choosex 0 =0.
∣
∣∣Rn(
π
45)∣∣
∣∣≤^1
(n+1)!∣∣
∣∣π
45− 0
∣∣
∣∣n+ 1
=
(π/45)n+^1
(n+1)!. The absolute error is less than or
equal to 5× 10 −^6 forn≥3.
Step 3: sin 4◦=sin
π
45=
π
45−
(π/45)
3!3
+
(π/45)^5
5!−
(π/45)^7
7!= 0. 069756
14.8 Rapid Review
- Find the sum of the series 81+ 27 + 9 + 3 + 1 +
1
3
+···.
Answer:This is a geometric series with first term 81 and a ratio of1
3
,
soS=81
1 − 1 / 3
=
243
2
.
- Determine whether the series
∑∞n= 15 n
n!
converges or diverges.Answer:nlim→∞
5 n+^1
(n+1)!·
n!
5 n
=nlim→∞5
n+ 1
=0so∑∞n= 15 n
n!
converges by ratio test.- Determine whether the series
∑∞n= 1lnn
√
n
converges or diverges.Answer:
lnn
√
n>
1
√
n
forn>e.∑∞n= 11
√
n
is ap-series withp<1, so it diverges.∑∞n= 1lnn
√
n=
ln 2
√
2+
∑∞n= 3lnn
√
n
and∑∞n= 3lnn
√
n
diverges by comparison to∑∞n= 31
√
n
, so theseries diverges.