AP Calculus BC Practice Exam 1 389Solutions to BC Practice Exam 1---Section I
Section I Part A
- The correct answer is (C).
x→lim(ln 2)+(ex)=eln 2=2 and limx→(ln 2)−(4−ex)
= 4 −eln 2= 4 − 2 = 2Since the two one-sided limits are the same,
x→lim(ln 2)g(x)=^2.- The correct answer is (A).
incr. decr. incr.f ′ ++ 00 –ab
ff ′ decr. incr.0
concave
downwardconcave
upwardfThe only graph that satisfies the behavior off
is (A).- The correct answer is (C).
The definition off′(x)is
f′(x)= lim
Δx→ 0f(x+Δx)− f(x)
Δx.
Thus, lim
Δx→ 0sin((π/3)+Δx)−sin(π/3)
Δx=
d(sinx)
dx∣∣
∣
∣x=π/ 3=cos(
π
3)
=1
2
.
- The correct answer is (B).
x=cost⇒
dx
dt
=−sintandy=sin^2 t⇒dy
dt
=2 sintcost.Then,
dy
dx=
(
dy
dt)/(
dx
dt)
=
2 sintcost
−sint
=−2 cost.Then,
d^2 y
dx^2=
(
dy′
dt)/(
dx
dt)=
2 sint
−sint=−2.
Evaluate att=
π
4
for
d^2 y
dx^2∣∣
∣∣
t=π 4=− 2
∣∣
t=π 4 =−^2.- The correct answer is (D).
Sincef(x)=∫
xe−x^2 dx, letu=−x^2 ,du=− 2 xdxor
−du
2
=xdx.Thus, f(x)=∫
eu(
−
du
2)
=−1
2
eu+C=−
1
2
e−x^2 +Cand f(0)= 1 ⇒−1
2
(e^0 )+C= 1⇒−
1
2
+C= 1
⇒C=
3
2
.
Therefore, f(x)=−1
2
e−x
2
+3
2
andf(1)=−1
2
e−^1 +3
2
=−
1
2 e