36 STEP 2. Determine Your Test Readiness
- See Figure DS-14.
10–1 2 xy y=x+ 2
y=x^2Figure DS-14
To find points of intersection, setx^2 =x+ 2
⇒x^2 −x− 2 = 0 ⇒x=2orx=−1.
Area of cross section=((x+2)−x^2 )^2.
Volume of solid,V=∫ 2− 1(
x+ 2 −x^2) 2
dx.
Using your calculator, you obtain:V=81
10
.
- Separate and simplify
dP
dt
=. 35 P
(
1 −P
4000
)
.
1
P(
1 −P
4000
)dP=. 35 dt4000
P(4000−P)
dP=. 35 dtIntegrate with a partial fraction
decomposition.
∫
4000
P(4000−P)
dP=∫. 35 dt
∫
dP
P
+
∫
dP
4000 −P=
∫. 35 dt
ln|P|−ln∣∣
4000 −P∣∣
=. 35 t+C 1ln∣∣
∣
∣P
4000 −P
∣∣
∣
∣=.^35 t+C^1
P
4000 −P=C 2 e.^35 tPopulation att=0 is 100, so
100
4000 − 100=
100
3900
=
1
39
=C 2.
The population model isP
4000 −P
=
e.^35 t
39⇒ 39 P=e.^35 t(4000−P)
⇒ 39 P+e.^35 tP= 4000 e.^35 t
⇒P(
39 +e.^35 t)
= 4000 e.^35 t⇒P=
4000 e.^35 t
39 +e.^35 t
⇒P=4000
39 e−.^35 t+ 1.
Whent=5,P=4000
39 e−.35(5)+ 1
⇒P=4000
39 e−^1.^75 + 1
≈ 514 .325.- If
dy
dx
=
−y
x^2andy=3 andx=2, approximate
ywhenx=3. Use Euler’s
Method with an increment of 0.5.y(2)=3 and(
dy
dx)x=2,y= 3=
− 3
4
soy(2.5)=y(2)+ 0. 5(
dy
dx)x=2,y= 3
= 3 + 0 .5(− 0 .75)= 2. 625(
dy
dx)x= 2 .5,y= 2. 625=
− 2. 625
(2.5)^2
=
− 21
8(6.25)
=
− 21
50
=− 0. 42
y(3)=y(2.5)+ 0. 5(
dy
dx)x= 2 .5,y= 2. 625
= 2. 625 + 0 .5(− 0 .42)
= 2. 625 − 0. 21 = 2. 415.