Limits and Continuity 695.5 Practice Problems
Part A The use of a calculator is not allowed.Find the limits of the following:- limx→ 0 (x−5) cosx
- Ifb=/0, evaluate limx→b
x^3 −b^3
x^6 −b^6
.
- limx→ 0
2 −
√
4 −x
x- xlim→∞
5 − 6 x
2 x+ 11 - xlim→−∞
x^2 + 2 x− 3
x^3 + 2 x^2 - xlim→∞
3 x^2
5 x+ 8 - xlim→−∞
3 x
√
x^2 − 4 - If f(x)=
{
ex for 0≤x< 1
x^2 ex for 1≤x≤ 5,
find limx→ 1 f(x).- xlim→∞
ex
1 −x^3 - limx→ 0
sin 3x
sin 4x - xlim→ 3 +
√
t^2 − 9
t− 3- The graph of a functionf is shown in
Figure 5.5-1.
Which of the following statements is/are
true?
I.xlim→ 4 −f(x)= 5.
II.xlim→ 4 f(x)= 2.
III. x=4 is not in the domain of f.Part B Calculators are allowed.- Find the horizontal and vertical asymptotes
of the graph of the function
f(x)=
1
x^2 +x− 2. 8 7 6 5 4 3 2 1
0123456789yxfFigure 5.5-1- Find the limit: limx→ 5 +
5 +[x]
5 −xwhen [x] is the
greatest integer ofx.- Find allx-values where the function
f(x)=
x+ 1
x^2 + 4 x− 12
is discontinuous.- For what value ofkis the function
g(x)={
x^2 +5, x≤ 3
2 x−k, x> 3
continuous atx=3?- Determine if
f(x)=⎧
⎨
⎩x^2 + 5 x− 14
x− 2
,ifx=/ 2
12, ifx= 2
is continuous atx=2. Explain why or why
not.