29.
30.
31.
32.
33.
34.
35.
1.
and (except 0), there are two x’s in the domain.
(D) The domain of the ln function is the set of positive reals. The
function g(x) > 0 if x^2 < 9.
(C) Since the domain of f(g) is (−3, 3), ln (9 − x^2 ) takes on every real
value less than or equal to ln 9.
(A) Substituting t^2 = x − 3 in y(t) = t^2 + 4 yields y = x + 1.
(D) Using the identity .
(D) 2 cos 5θ = 0 when 5θ = .
(C) If 2 + 2 cos θ = 3, then cos θ = .
(B) For polar functions x = r cos θ. Solving (θ − 2 cos θ)cos θ = 2 yields
θ ≈ 5.201, and thus y = r sin θ = (5.201 − 2 cos 5.201)sin 5.201.
2 Limits and Continuity
(B) The limit as x → 2 is 0 ÷ 8.