Cracking The Ap Calculus ab Exam 2018

(Marvins-Underground-K-12) #1
we  need    to  substitute  for x   dx, so  if  we  divide  du  by  10, we  get  du =   x   dx. Now,    if  we

substitute into the integrand, we get ∫ xe^5 x


(^2) −1
dx = (^) ∫ eu du = eu + C. Substituting back,


we get ∫ xe^5 x


(^2) −1
dx = e^5 x
(^2) −1



  • C.



  1. ln |ex − e−x| + C


Recall that ∫eudu = eu + C. Let’s use u-substitution. If we let u = ex − e−x, then du = ex + e−xdx.


If we substitute into the integrand, we get ∫ dx = ∫ . Recall that ∫ = ln |u | + C.


Substituting back, we get ∫ dx = ln | ex − e−x| + C.


9.

Recall that ∫ au du = au + C. Let’s use u-substitution. If we let u = −x^2 , then du = −2x dx.


But we  need    to  substitute  for x   dx, so  if  we  divide  du  by  −2, we  get − du    =   x   dx. Now,    if  we

substitute into the integrand, we get ∫ x4−x2 dx = − (^) ∫ 4 u du = − 4 u + C. Substituting


back, we get ∫ x 4 −x2 dx = − 4 −x2 + C = − 4 −x2 + C.


10.

Recall that ∫ au du = au + C. Let’s use u-substitution. If we let u = sin x, then du = cos x


dx. If we substitute into the integrand, we get ∫ 7 sin x cos x dx = ∫ 7 u du = 7 u + C.


Substituting back, we get ∫ 7 sin x cos x dx = + C.


SOLUTIONS TO UNIT 3 DRILL


1.
Free download pdf