we need to substitute for x dx, so if we divide du by 10, we get du = x dx. Now, if we
substitute into the integrand, we get ∫ xe^5 x
(^2) −1
dx = (^) ∫ eu du = eu + C. Substituting back,
we get ∫ xe^5 x
(^2) −1
dx = e^5 x
(^2) −1
- C.
- ln |ex − e−x| + C
Recall that ∫eudu = eu + C. Let’s use u-substitution. If we let u = ex − e−x, then du = ex + e−xdx.
If we substitute into the integrand, we get ∫ dx = ∫ . Recall that ∫ = ln |u | + C.
Substituting back, we get ∫ dx = ln | ex − e−x| + C.
9.
Recall that ∫ au du = au + C. Let’s use u-substitution. If we let u = −x^2 , then du = −2x dx.
But we need to substitute for x dx, so if we divide du by −2, we get − du = x dx. Now, if we
substitute into the integrand, we get ∫ x4−x2 dx = − (^) ∫ 4 u du = − 4 u + C. Substituting