sin θ = csc θ = Thus, sin θ = cos θ = sec θ = Thus, cos θ = tan θ = cot θ = Thus, tan θ = sin 2θ = 2sinθ cosθ cos 2θ = 1 − 2sin^2 θ sin^2 θ + cos^2 θ = 1cos 2θ = cos^2 θ − sin^2 θ cos 2θ = 2cos^2 θ − 1 1 + tan^2 θ = sec^2 θcos^2 θ = sin^2 θ = 1 + cot^2 θ = csc^2 θsin(A + B) = sin A cos B + cos A sin Bsin(A − B) = sin A cos B − cos A sin Bcos(A + B) = cos A cos B − sin A sin Bcos(A − B) = cos A cos B + sin A sin BYou must be able to work in radians and know that 2π = 360°.
You should know the following: