CK12 - Geometry

(Marvins-Underground-K-12) #1
Statement Reason


  1. is an isoscelestrapezoidwith 1. Given

  2. Extend 2. Line Postulate

  3. Construct as shownin the figure 3. ParallelPostulate


belowsuchthat

with addedauxiliarylinesand
markings


  1. is a parallelogram 4. Definitionof a parallelogram



    1. Oppositeanglesin a parallelogramare

    2. Oppositesidesof a parallelogramare
      congruent




6.


  1. Definitionof isoscelestriangle

  2. is isosceles



    1. Baseanglesin an isoscelestriangleare





    1. AlternateInteriorAnglesTheorem





    1. TransitivePropertyof





    1. TransitivePropertyof




IdentifyIsoscelesTrapezoidswith BaseAngles


In the last lesson,you learnedaboutbiconditionalstatementsand conversestatements.You just learned
thatif a trapezoidis an isoscelestrapezoidthen baseanglesare congruent.The converseof this statement
is also true. If a trapezoidhas two congruentanglesalongthe samebase,then it is an isoscelestrapezoid.
You can use this fact to identifylengthsin differenttrapezoids.


First,we provethat this converseis true.


Theorem:If two anglesalongone baseof a trapezoidare congruent,then the trapezoid
is an isoscelestrapezoid


Given:Trapezoid with and


  • Prove:

Free download pdf