Statement Reason- is an isoscelestrapezoidwith 1. Given
- Extend 2. Line Postulate
- Construct as shownin the figure 3. ParallelPostulate
belowsuchthatwith addedauxiliarylinesand
markings- is a parallelogram 4. Definitionof a parallelogram
- Oppositeanglesin a parallelogramare
- Oppositesidesof a parallelogramare
congruent
6.
- Definitionof isoscelestriangle
- is isosceles
- Baseanglesin an isoscelestriangleare
- AlternateInteriorAnglesTheorem
- TransitivePropertyof
- TransitivePropertyof
IdentifyIsoscelesTrapezoidswith BaseAngles
In the last lesson,you learnedaboutbiconditionalstatementsand conversestatements.You just learned
thatif a trapezoidis an isoscelestrapezoidthen baseanglesare congruent.The converseof this statement
is also true. If a trapezoidhas two congruentanglesalongthe samebase,then it is an isoscelestrapezoid.
You can use this fact to identifylengthsin differenttrapezoids.
First,we provethat this converseis true.
Theorem:If two anglesalongone baseof a trapezoidare congruent,then the trapezoid
is an isoscelestrapezoid•
Given:Trapezoid with and- Prove: