CK12 - Geometry

(Marvins-Underground-K-12) #1

Similarityby AA


LearningObjectives



  • Determinewhethertrianglesare similar.

  • UnderstandAAA and AA rulesfor similartriangles.

  • Solveproblemsaboutsimilartriangles.


Introduction


You havean understandingof whatsimilarpolygonsare and how to recognizethem.Becausetrianglesare
the mostbasicbuildingblockon whichotherpolygonscan be based,we now focusspecificallyon similar
triangles.We’ll find that there’s a surprisinglysimplerule for trianglesto be similar.


Anglesin SimilarTriangles


Tech Note- GeometrySoftware


Use your geometrysoftwareto experimentwith triangles.Try this:


  1. Set up two triangles, and.

  2. Measurethe anglesof both triangles.

  3. Movethe verticesuntil the measuresof the correspondinganglesare the samein both triangles.

  4. Computethe ratiosof the lengthsof the sides


.

Repeatsteps1-4 with differenttriangles.Observewhathappensin step 4 eachtime.Recordyour obser-
vations.

Whatdid you see duringyour experiment?You mighthavenoticedthis: Whenyou adjusttrianglesto make
their anglescongruent,you automaticallymakethe sidesproportional(the ratiosin step 4 are the same).
Oncewe havetriangleswith congruentanglesand sideswith proportionallengths,we knowthat the triangles
are similar.


Conclusion:If the anglesof a triangleare congruentto the correspondinganglesof anothertriangle,then
the trianglesare similar. This is a handyrule for similartriangles—arule basedon just the anglesof the tri-
angles.We call this the AAA rule.


Caution:The AAA rule is a rule fortrianglesonly. We alreadyknowthat otherpairsof polygonscan have
all correspondinganglescongruenteventhoughthe polygonsarenotsimilar.


Example 1


The followingis false statement:If the correspondinganglesof two polygonsare congruent,then the polygons
are similar.


Whatis a counterexampleto thefalsestatementabove?
Free download pdf