CK12 - Geometry

(Marvins-Underground-K-12) #1

Generalization: Points , (the imageof ), and the originare collinearfor any point in a dilation.
You can provethe generalizationin the LessonExercises.


How do we knowthat a dilationis a similaritytransformation?We wouldhaveto establishthat lengthsof
segmentsare proportionaland that anglesare congruent.Let’s attacktheserequirementsthroughthe distance
formulaand slopes.


Let , , and be pointsin a coordinategrid. Let a dilationhavecenterat the origin


and scalefactor.


Part 1: ProportionalSide Lengths


Let’s look at the lengthsof two segments, , and.


Accordingto the distanceformula,


and

Free download pdf