Thereare 6 faces,12 edges,and 8 vertices.Usingthe formula:So the figureconformsto Euler’s formula.Example 5
In a 6-facedpolyhedron,thereare 10 edges.How manyverticesdoesthe polyhedronhave?Use Euler'sformula.Euler’s formulaSubstitutevaluesforfande
SolveThereare 6 verticesin the figure.Example 6
A 3-dimensionalfigurehas 10 vertices,5 faces,and 12 edges.It is a polyhedron?How do you know?Use Euler'sformula.Euler’s formulaSubstitutevaluesforv,f, andeEvaluateThe equationdoesnot hold so Euler’s formuladoesnot applyto this figure.Sinceall polyhedraconformto
Euler’s formula,this figuremustnot be a polyhedron.
RegularPolyhedra
Polyhedracan be namedand classifiedin a numberof ways—byside,by angle,by base,by numberof
faces,and so on. Perhapsthe mostimportantclassificationis whetheror not a polyhedronisregularor not.
You will recallthat aregularpolygonis a polygonwhosesidesand anglesare all congruent.
A polyhedronis regularif it has the followingcharacteristics:
- All facesare the same.
- All facesare congruentregularpolygons.
- The samenumberof facesmeetat everyvertex.