To find the imageof , we can applythe sametransformationvectorto point. The arrowheadof thevectoris at.
The vectorin example2 is oftenrepresentedwith a boldfacesingleletterv.
- The horizontalcomponentof vector is.
- The verticalcomponentof vector is.
- The vectorcan also be representedas a numberpair madeup of the horizontaland verticalcomponents.
The vectorfor this transformationis
Example 3
A trianglehas vertices , , and. The vectorfor a translationis. Whatare the verticesof the imageof the triangle?
Add the horizontaland verticalcomponentsto the - and -coordinatesof the vertices.Challenge:Can you describewhatthis transformationdoesto the originaltriangle?
FurtherReading
Vectorsare usedin physicsto representforces,velocity, and otherquantities.Learnmoreaboutvectors
at:
http://en.wikipedia.org/wiki/Vector_(spatial)LessonSummary
You can thinkof a translationas a way to movepointsin a coordinateplane.And you can be sure that the
shapeand size of a figurestaysthe samein a translation.For that reasona translationis calledanisometry.
(Note:Isometryis a compoundwordwith two rootsin Greek,“iso” and “metry.” You may knowotherwords
with thesesameroots,in additionto “isosceles”and “geometry.”)
Vectorsprovidean alternativeway to representa translation.A vectorhas a directionand a length—the
exactfeaturesthat are involvedin movinga pointin a translation.
Pointsto Consider
Thinkaboutsomespecialtransformationvectors.Can you picturewhateachone doesto a figurein a coor-
dinateplane?