CK12 - Geometry

(Marvins-Underground-K-12) #1
To find the imageof , we can applythe sametransformationvectorto point. The arrowheadof the

vectoris at.


The vectorin example2 is oftenrepresentedwith a boldfacesingleletterv.



  • The horizontalcomponentof vector is.

  • The verticalcomponentof vector is.

  • The vectorcan also be representedas a numberpair madeup of the horizontaland verticalcomponents.


The vectorfor this transformationis


Example 3


A trianglehas vertices , , and. The vectorfor a translationis

. Whatare the verticesof the imageof the triangle?


Add the horizontaland verticalcomponentsto the - and -coordinatesof the vertices.

Challenge:Can you describewhatthis transformationdoesto the originaltriangle?


FurtherReading


Vectorsare usedin physicsto representforces,velocity, and otherquantities.Learnmoreaboutvectors
at:


http://en.wikipedia.org/wiki/Vector_(spatial)

LessonSummary


You can thinkof a translationas a way to movepointsin a coordinateplane.And you can be sure that the
shapeand size of a figurestaysthe samein a translation.For that reasona translationis calledanisometry.
(Note:Isometryis a compoundwordwith two rootsin Greek,“iso” and “metry.” You may knowotherwords
with thesesameroots,in additionto “isosceles”and “geometry.”)


Vectorsprovidean alternativeway to representa translation.A vectorhas a directionand a length—the
exactfeaturesthat are involvedin movinga pointin a translation.


Pointsto Consider


Thinkaboutsomespecialtransformationvectors.Can you picturewhateachone doesto a figurein a coor-
dinateplane?






Free download pdf