CK12 - Geometry

(Marvins-Underground-K-12) #1
e) Whatis the area of the final imagecircle?

If is a polygonmatrixfor a set of pointsin a coordinateplane,we coulduse matrixarithmeticto find
, the matrixof the imageof the polygonafter the translation-dilationof this example4.


Let’s use this translation-dilationto movethe rectanglein example3.


Dilationscalaris


Translationmatrixis

The final imageis the rectanglewith verticesat and.


LessonSummary


In this lessonwe completedour studyof transformations.Dilationscompletethe collectionof transformations
we havenow learnedabout:translations,reflections,rotations,and dilations.


Scalarmultiplicationwas defined.Differencesof scalarmultiplicationcomparedto matrixmultiplicationwere
observed:any scalarcan multiplyany matrix,and the dimensionsof a scalarproductare the sameas the
dimensionsof the matrixbeingmultiplied.


Compositionsinvolvingdilationsgaveus anotherway to changeand movepolygons.All sortsof matrix
operations—scalarmultiplication,matrixmultiplication,and matrixaddition—canbe usedto find the image
of a polygonin thesecompositions.


Pointsto Consider


All of our workwith the matricesthat representpolygonsand translationsin two-dimensionalspace(a coor-
dinateplane)has ratherobviousparallelsin threedimensions.


A matrixthat represents pointswouldhave rowsand columnsratherthan.


A dilationis still a scalarproduct.

Free download pdf