CK12 - Geometry

(Marvins-Underground-K-12) #1

  • AdditionPropertyof Equality: If , then.


Translation:You can add the samenumberto both sidesof an equation.

Example:If , then.


  • MultiplicationPropertyof Equality: If , then


Translation:You can multiplythe samenumberon both sidesof an equation.

Example:If , then.

Keepin mindthat theseare propertiesaboutnumbers. As you go furtherinto geometry, you can applythe
propertiesof equalityto anythingthat is a number:lengthsof segmentsand anglemeasures,for example.


Propertiesof Congruence


Let’s reviewthe definitionsof congruentsegmentsand angles.


if and only if.

CongruentSegments:

Rememberthat, although and aresegments, and arelengths
of thosesegments,meaningthat and arenumbers. The propertiesof
equalityapplyto and.

CongruentAngles: if and only if =

The commentaboveaboutsegmentlengthsalso appliesto anglemeasures.The
propertiesof equalityapplyto and.

Any statementaboutcongruentsegmentsor congruentanglescan be translateddirectlyinto a statement
aboutnumbers.This meansthat eachpropertyof equalityhas a correspondingpropertyof congruentseg-
mentsand a correspondingpropertyof congruentangles.


Hereare someof the basicpropertiesof equalityand the correspondingcongruenceproperties.


Giventhat and are real numbers.


ReflexivePropertyof Equality:


ReflexivePropertyof Congruenceof Segments:

ReflexivePropertyof Congruenceof Angles:

SymmetricPropertyof Equality: If , then.


If , then

SymmetricPropertyof Congruenceof Segments:
Free download pdf