3.6. Exponential Equations http://www.ck12.org
log
(i
12
)
=− 0. 0145 ·d
log
(i
12
)
=− 0. 0145 · 10
log
(i
12
)
=− 0. 145
(i
12
)
=e−^0.^145
i= 12 ·e−^0.^145 ≈ 10. 380
- First solve forex,
ex−e−x
3 =^14
ex−e−x= 42
e^2 x− 1 = 42 ex
(ex)^2 − 42 ex− 1 = 0
Letu=ex.
u^2 − 42 u− 1 = 0
u=−(−^42 )±
√(− 42 ) (^2) − 4 · 1 ·(− 1 )
2 · 1 =
42 ±√ 1768
2 ≈^42.^023796 ,−^0.^0237960
Note that the negative result is extraneous so you only proceed in solving forxfor one result.
ex≈ 42. 023796
x≈ln 42. 023796 ≈ 3. 738
Practice
Solve each equation forx. Round each answer to three decimal places.
- 4x= 6
- 5x= 2
- 12^4 x= 1020
- 7^3 x= 2400
- 2x+^1 − 5 = 22
- 5x+ 12 x= 5 x+ 7
- 2x+^1 = 22 x+^3
- 3x+^3 = 9 x+^1