CK-12-Pre-Calculus Concepts

(Marvins-Underground-K-12) #1

6.1. Basic Trigonometric Identities http://www.ck12.org


tanθ=o p pad j

=

(o p p
hy p

)


(ad j
hy p

)


=cossinθθ


  1. As Example C and Example A show, cos(θ−π 2 )=cos(π 2 −θ).


0. 68 =cos

(


θ−π 2

)


=cos


2 −θ

)


=sin(θ)

Then, csc(−θ) =−cscθ


=−sin^1 θ
=−( 0. 68 )−^1





cosxsinxtanxcotxsecxcscx=cosxsinxtanx·tan^1 x·cos^1 x·sin^1 x
= 1

Practice



  1. Prove the quotient identity for cotangent using sine and cosine.

  2. Explain why cos(π 2 −θ)=sinθusing graphs and transformations.

  3. Explain why secθ=cos^1 θ.

  4. Prove that tanθ·cotθ=1.

  5. Prove that sinθ·cscθ=1.

  6. Prove that sinθ·secθ=tanθ.

  7. Prove that cosθ·cscθ=cotθ.

  8. If sinθ= 0 .81, what is sin(−θ)?

  9. If cosθ= 0 .5, what is cos(−θ)?

  10. If cosθ= 0 .25, what is sec(−θ)?

  11. If cscθ= 0 .7, what is sin(−θ)?

  12. How can you tell from a graph if a function is even or odd?

  13. Provetancscx·secxx·cotx=tanx.

Free download pdf