CK-12-Pre-Calculus Concepts

(Marvins-Underground-K-12) #1

6.3. Sum and Difference Identities http://www.ck12.org


sin(x−y)
sin(x+y)=

tanx−tany
tanx+tany
sinxcosy−cosxsiny
sinxcosy+cosxsiny=
sinxcosy−cosxsiny
sinxcosy+cosxsiny·

( 1


cosx·cosy

)


( 1


cosx·cosy

)=


(sinxcosy
cosx·cosy

)



(cosxsiny
cosx·cosy

)


(sinxcosy
cosx·cosy

)


+


(cosxsiny
cosx·cosy

)=


tanx−tany
tanx+tany=

Practice


Find the exact value for each expression by using a sum or difference identity.



  1. cos 75◦

  2. cos 105◦

  3. cos 165◦

  4. sin 105◦

  5. sec 105◦

  6. tan 75◦

  7. Prove the sine of a sum identity.

  8. Prove the tangent of a sum identity.

  9. Prove the tangent of a difference identity.

  10. Evaluate without a calculator: cos 50◦cos 10◦−sin 50◦sin 10◦.

  11. Evaluate without a calculator: sin 35◦cos 5◦−cos 35◦sin 5◦.

  12. Evaluate without a calculator: sin 55◦cos 5◦+cos 55◦sin 5◦.

  13. If cosαcosβ=sinαsinβ, then what does cos(α+β)equal?

  14. Prove that tan(x+π 4 )=^11 +−tantanxx.

  15. Prove that sin(x+π) =−sinx.

Free download pdf