6.4. Double, Half, and Power Reducing Identities http://www.ck12.org
- cos^2 x=^1 +cos 2 2 x
- tan^2 x=^11 −+cos 2cos 2xx
The half angle identities are a rewritten version of the power reducing identities. The proofs are left as practice
problems.
- sin 2 x=±
√
1 −cosx
2
- cosx 2 =±
√
1 +cosx
2
- tanx 2 =±
√ 1 −cosx
1 +cosx
Example A
Rewrite sin^4 xas an expression without powers greater than one.
Solution: While sinx·sinx·sinx·sinxdoes technically solve this question, try to get the terms to sum together not
multiply together.
sin^4 x= (sin^2 x)^2
=
( 1 −cos 2x
2
) 2
=^1 −2 cos 2x+cos
(^22) x
4
=^14
(
1 −2 cos 2x+^1 +cos 4 2 x
)
Example B
Write the following expression with only sinxand cosx: sin 2x+cos 3x.
Solution:
sin 2x+cos 3x=2 sinxcosx+cos( 2 x+x)
=2 sinxcosx+cos 2xcosx−sin 2xsinx
=2 sinxcosx+(cos^2 x−sin^2 x)cosx−(2 sinxcosx)sinx
=2 sinxcosx+cos^3 x−sin^2 xcosx−2 sin^2 xcosx
=2 sinxcosx+cos^3 x−3 sin^2 xcosx
Example C
Use half angles to find an exact value of tan 22. 5 ◦without using a calculator.
Solution:tanx 2 =±
√ 1 −cosx
1 +cosx
tan 22. 5 ◦=tan^452 ◦=±
√
1 −cos 45◦
1 +cos 45◦=±
√√
√√ 1 −√ 22
1 +
√ 2
2
=±
√√
√√^22 −√ 22
(^22) +√ 22 =±
√
2 −
√
2
2 +√ 2
Sometimes you may be requested to get all the radicals out of the denominator.