CK-12-Pre-Calculus Concepts

(Marvins-Underground-K-12) #1

6.4. Double, Half, and Power Reducing Identities http://www.ck12.org



  • cos^2 x=^1 +cos 2 2 x

  • tan^2 x=^11 −+cos 2cos 2xx


The half angle identities are a rewritten version of the power reducing identities. The proofs are left as practice
problems.



  • sin 2 x=±



1 −cosx
2


  • cosx 2 =±



1 +cosx
2


  • tanx 2 =±


√ 1 −cosx
1 +cosx

Example A
Rewrite sin^4 xas an expression without powers greater than one.
Solution: While sinx·sinx·sinx·sinxdoes technically solve this question, try to get the terms to sum together not
multiply together.


sin^4 x= (sin^2 x)^2
=

( 1 −cos 2x
2

) 2


=^1 −2 cos 2x+cos

(^22) x
4
=^14


(


1 −2 cos 2x+^1 +cos 4 2 x

)


Example B
Write the following expression with only sinxand cosx: sin 2x+cos 3x.
Solution:


sin 2x+cos 3x=2 sinxcosx+cos( 2 x+x)
=2 sinxcosx+cos 2xcosx−sin 2xsinx
=2 sinxcosx+(cos^2 x−sin^2 x)cosx−(2 sinxcosx)sinx
=2 sinxcosx+cos^3 x−sin^2 xcosx−2 sin^2 xcosx
=2 sinxcosx+cos^3 x−3 sin^2 xcosx

Example C
Use half angles to find an exact value of tan 22. 5 ◦without using a calculator.


Solution:tanx 2 =±


√ 1 −cosx
1 +cosx

tan 22. 5 ◦=tan^452 ◦=±



1 −cos 45◦
1 +cos 45◦=±

√√


√√ 1 −√ 22


1 +


√ 2
2


√√


√√^22 −√ 22


(^22) +√ 22 =±



2 −



2


2 +√ 2


Sometimes you may be requested to get all the radicals out of the denominator.

Free download pdf