CK-12-Pre-Calculus Concepts

(Marvins-Underground-K-12) #1

8.8. Cramer’s Rule http://www.ck12.org






x=

∣∣


∣∣^7212


108 − 12


∣∣


∣∣


∣∣


∣∣^512


18 − 12


∣∣


∣∣


=^725 ··((−−^1212 ))−− 1212 ··^10818 =− 2762160 =^18023


y=

∣∣


∣∣^572


18 108


∣∣


∣∣


∣∣


∣∣^512


18 − 12


∣∣


∣∣


=^5 ·^108276 −^72 ·^18 =− 276756 =−^6323



  1. Input the following three matrices into your calculator. MatrixAhas columns that are the constants and they
    coefficients. MatrixBhas columns that arexcoefficients and the constants. MatrixCis just the coefficient matrix.


A=


[− 112 21


15 − 21


]


B=


[ 70 − 112


27 15


]


C=


[ 70 21


27 − 21


]


Then computex=detdetCAandy=detdetCB


The solution isx=− 1 ,y=− 2
3.


3 x+ 2 y+z= 7
4 x+ 0 y+z= 6
6 x−y+ 0 z= 5

z=

∣∣


∣∣


∣∣


3 2 7


4 0 6


6 −1 5


∣∣


∣∣


∣∣


∣∣


∣∣


∣∣


3 2 1


4 0 1


6 −1 0


∣∣


∣∣


∣∣


=^0 + 02 +· 26 ·· 16 +· 67 +· 14 ··( 4 −·(^1 −) 1 −)^0 −− 0 (−−(^1 −) 1 ·^6 )·· 13 −· 35 −·^40 ·^2 =^2211 = 2


Practice


Solve the following systems of equations using Cramer’s Rule. If one solution does not exist, explain.

Free download pdf