Then.
ExerciseFind the Taylorseriesof the followingfunctionsat the givenx 0 with givendegreen.
1.f(x) =exatx= 0,n= 3
2.f(x) =ln xatx= 1,n= 4
3.f(x) = 1 +x+x^2 +x^3 +x^4 atx= -1,n= 4
Taylorand MaclaurinSeries
Definition(TaylorSeriesoff)
The Taylorseriesof a functionfatx=x 0 is the powerseries
takingall the termsof the Taylorpolynomials.The MaclaurinseriesM(x) offis the Taylorseriesatx= 0.
Example 1 Find the Maclaurinseriesoff(x) =cos x.
Solution..
Notice the pattern repeats every 4 terms. So
.
The Maclaurinseriesoff(x) =cos xis
.
ExerciseFind the Taylorseriesof followingfunctionsat the givenx 0.
- at
- at
- at
Convergenceof Taylorand MaclaurinSeries
Sincef(n)(x) is definedfor all functionsfin this text, the TaylorseriesT(x) offis alwaysdefined.As for power
seriesin general,the first questionis: