http://www.ck12.org Chapter 6. Transcendental Functions
d
dx[logbx] =wlim→xlogbw−logbx
w−x
=wlim→xlogwb−(wx/x)=wlim→x[ 1
w−xlogb(w
x)]
=wlim→x[ 1
w−xlogb(x+(w−x)
x)]
=wlim→x[ 1
w−xlogb(
1 +w−xx)]
=wlim→x[ 1
x(w−x)logb(
1 +w−xx)]
=wlim→x[ x
x(w−x)logb(
1 +w−xx)]
.
At this stage, leta= (w−x)/(x),the limit ofw→xthen becomesa→ 0 .Substituting, we get
=alim→ 0[ 1
x1
alogb(^1 +a)]
=^1 xalim→ 0[ 1
alogb(^1 +a)]
=^1 xalim→ 0[
logb( 1 +a)^1 /a]
.
Inserting the limit,
=^1 xlogb[
alim→ 0 (^1 +a)^1 /a]
.
But by the definitione=lima→ 0 ( 1 +a)^1 /a,
d
dx[logbx] =1
xlogbe.From the box above, we can express logbein terms of natural logarithm by the using the formula logbw=lnw/lnb.
Then
logbe=lnlneb=ln^1 b.Thus we conclude
d
dx[logbx] =1
xlnb>^0 ,