CK-12-Calculus

(Marvins-Underground-K-12) #1

6.5. Derivatives and Integrals Involving Inverse Trigonometric Functions http://www.ck12.org


To change the limits,


x=ln 2→u=e−x=e−ln 2=eln 1/^2 =^12 ,
x=ln

( 2


√ 3


)


→u=e−x=e−ln 2/

√ 3
=

√ 3


2.


Thus our integral becomes


∫ln( 2 /√ 3 )
ln2
√e−x
1 −e−^2 xdx=

∫ √ 3 / 2
1 / 2
√u
1 −u^2

−du
u
=−

∫√ 3 / 2
1 / 2

√^1


1 −u^2 du

=−

[


sin−^1 u

]√ 3 / 2


1 / 2
=−

[


sin−^1

(√


3


2


)


−sin−^1

( 1


2


)]


=−



3 −

π
6

]


=−π 6.

Multimedia Links


For a video presentation of the derivatives of inverse trigonometric functions(4.4), see Math Video Tutorials by
James Sousa, The Derivatives of Inverse Trigonometric Functions (8:55).


MEDIA


Click image to the left for use the URL below.
URL: http://www.ck12.org/flx/render/embeddedobject/589

For three presentations of integration involving inverse trigonometric functions(18.0), see Math Video Tutorials by
James Sousa, Integration Involving Inverse Trigonometric Functions, Part1 (7:39)


MEDIA


Click image to the left for use the URL below.
URL: http://www.ck12.org/flx/render/embeddedobject/590
Free download pdf