6.5. Derivatives and Integrals Involving Inverse Trigonometric Functions http://www.ck12.org
To change the limits,
x=ln 2→u=e−x=e−ln 2=eln 1/^2 =^12 ,
x=ln
( 2
√ 3
)
→u=e−x=e−ln 2/
√ 3
=
√ 3
2.
Thus our integral becomes
∫ln( 2 /√ 3 )
ln2
√e−x
1 −e−^2 xdx=
∫ √ 3 / 2
1 / 2
√u
1 −u^2
−du
u
=−
∫√ 3 / 2
1 / 2
√^1
1 −u^2 du
=−
[
sin−^1 u
]√ 3 / 2
1 / 2
=−
[
sin−^1
(√
3
2
)
−sin−^1
( 1
2
)]
=−
[π
3 −
π
6
]
=−π 6.
Multimedia Links
For a video presentation of the derivatives of inverse trigonometric functions(4.4), see Math Video Tutorials by
James Sousa, The Derivatives of Inverse Trigonometric Functions (8:55).
MEDIA
Click image to the left for use the URL below.
URL: http://www.ck12.org/flx/render/embeddedobject/589
For three presentations of integration involving inverse trigonometric functions(18.0), see Math Video Tutorials by
James Sousa, Integration Involving Inverse Trigonometric Functions, Part1 (7:39)
MEDIA
Click image to the left for use the URL below.
URL: http://www.ck12.org/flx/render/embeddedobject/590