CK-12-Calculus

(Marvins-Underground-K-12) #1

http://www.ck12.org Chapter 7. Integration Techniques


Trigonometric Integrands


We can apply the change of variable technique to trigonometric functions as long asuis a differentiable function of
x.Before we show how, recall the basic trigonometric integrals:



cosudu=sinu+C,

sinudu=−cosu+C,

sec^2 udu=tanu+C,

csc^2 udu=−cotu+C,

(secu)(tanu)du=secu+C,

(cscu)(cotu)du=−cscu+C.

Example 3:
Evaluate∫cos( 3 x+ 2 )dx.
Solution:
The argument of the cosine function is 3x+ 2 .So we letu= 3 x+ 2 .Thendu= 3 dx,ordx=du/ 3.
Substituting,



cos( 3 x+ 2 )dx=


cosu·^13 dx
=^13


cosudx.

Integrating,


=^13 sinu+C
=^13 sin( 3 x+ 2 )+C.

Example 4:
This example requires us to use trigonometric identities before we substitute. Evaluate


∫ 1
cos^23 xdx.

Solution:
Since sec 3x=cos 3^1 x, the integral becomes

Free download pdf