5.2. Calculating the Standard Deviation http://www.ck12.org
Example 2:
Calculate the variance and the standard deviation of the following values:
Solution:
5 , 14 , 16 , 17 , 18
TABLE5.2:
x (x−x ̄) (x−x ̄)^2
5 -9 81
14 0 0
16 2 4
17 3 9
18 4 16
Work space for completing the table
∑x=^70 (x−x ̄)→^5 −^14 =−9; 14−^14 =0; 16−^14 =2; 17−^14 =3; 18−^14 =^4
x ̄=
70
5
(x−x ̄)^2 →(− 9 )^2 =81;( 0 )^2 =0;( 2 )^2 = 4 ( 3 )^2 =9;( 4 )^2 = 16
x ̄= 14
Variance:∑(x−x ̄)^2 = 100
σ^2 =
∑(x−x ̄)^2
n
σ^2 =
110
5
σ^2 = 22
Standard Deviation:∑(x−x ̄)^2 = 110
x ̄=
110
5
x ̄= 22
SD=
√
22
SD= 4. 7
The symbol(σ)is used to represent standard deviation. Using this symbol and the steps that were followed to
calculate the standard deviation, we can write the following formula:
σ=
√
∑(x−x ̄)^2
n