http://www.ck12.org Chapter 8. Energy Conservation
Solution
Since the centripetal force you exert on the ball in order to make it spin is perpendicular to the ball’s path, you do
not work on the ball while spinning it in a circle. Therefore, the only work you do on the ball is when you are
pulling it in a straight line.
W=F d
W=10N∗5m
W=50J
Example 2
A block of mass 5kg is sliding down a ramp inclined at 45 degrees. If the coefficient of kinetic friction between the
ramp and the block is 0.3, how much work does the force of friction do as the block slides 3m down to the bottom
of the ramp.
Solution
In order to find the work done by friction, we first want to find out the magnitude of the force of friction.
f=μkN start with the equation for the force of friction
f=μkmgcos( 30 ) substitute the y-component of the weight of the block for the normal force
Now that we have the magnitude of the force of friction, we can plug that into the equation for work.
W=F d
W=μkmgcos( 45 )
W= 0. 3 ∗5kg∗ 9 .8m/s^2 ∗cos( 45 )
W= 10. 4 J
Watch this Explanation
MEDIA
Click image to the left for use the URL below.
URL: http://www.ck12.org/flx/render/embeddedobject/399