3.5. Parallel and Perpendicular Lines in the Coordinate Plane http://www.ck12.org
7.y=− 2 x+3 andy=^12 x+ 3
8.y= 4 x−2 andy= 4 x+ 5
9.y=−x+5 andy=x+ 1
10.y=− 3 x+1 andy= 3 x− 1
- 2x− 3 y=6 and 3x+ 2 y= 6
- 5x+ 2 y=−4 and 5x+ 2 y= 8
13.x− 3 y=−3 andx+ 3 y= 9
14.x+y=6 and 4x+ 4 y=− 16
Determine the equation of the line that isparallelto the given line, through the given point.
15.y=− 5 x+1;(− 2 , 3 )
16.y=^23 x−2;( 9 , 1 )
17.x− 4 y=12;(− 16 ,− 2 )
- 3x+ 2 y=10;( 8 ,− 11 )
- 2x−y=15;( 3 , 7 )
20.y=x−5;( 9 ,− 1 )
Determine the equation of the line that isperpendicularto the given line, through the given point.
21.y=x−1;(− 6 , 2 )
22.y= 3 x+4;( 9 ,− 7 )
- 5x− 2 y=6;( 5 , 5 )
24.y=4;(− 1 , 3 )
25.x=−3;( 1 , 8 )
26.x− 3 y=11;( 0 , 13 )
Find the equation of the two lines in each graph below. Then, determine if the two lines are parallel, perpendicular
or neither.