CK-12 Geometry-Concepts

(Marvins-Underground-K-12) #1

8.10. Laws of Sines and Cosines http://www.ck12.org


sin 57◦
a

=


sin 85◦
b

=


sin 38◦
12

sin 57◦
a

=


sin 38◦
12

sin 85◦
b

=


sin 38◦
12
a·sin 38◦= 12 ·sin 57◦ b·sin 38◦= 12 ·sin 85◦

a=
12 ·sin 57◦
sin 38◦

≈ 16. 4 b=
12 ·sin 85◦
sin 38◦

≈ 19. 4


Example B


Solve the triangle using the Law of Sines. Round decimal answers to the nearest tenth.


Set up the ratio for^6 Busing Law of Sines.


sin 95◦
27

=


sinB
16
27 ·sinB= 16 ·sin 95◦

sinB=
16 ·sin 95◦
27
→sin−^1

(


16 ·sin 95◦
27

)


= 36. 2 ◦


To findm^6 Cuse the Triangle Sum Theorem.m^6 C+ 95 ◦+ 36. 2 ◦= 180 ◦→m^6 C= 48. 8 ◦


To findc, use the Law of Sines again.sin 95

27 =


sin 48. 8 ◦
c

c·sin 95◦= 27 ·sin 48. 8 ◦

c=

27 ·sin 48. 8 ◦
sin 95◦

≈ 20. 4


Example C


Solve the triangle using Law of Cosines. Round your answers to the nearest hundredth.

Free download pdf